VACUUM GRIPPER MADE OF ARTIFICIAL MUSCLES
Majority of the robots that are used in factories are often equipped with vacuum grippers, for holding onto flat objects. Typically those grippers are powered by compressed air, which has some drawbacks. Scientists have developed one that utilizes an artificial muscle.
The problem with air-powered vacuum grippers include the facts that the required compressors are noisy, use a lot of energy, plus they are big and bulky. That's where the new gripper comes in.
Developed by a team from Germany's Saarland Univerisity led by Professor Stefan Seelecke, it incorporates bundles of ultrafine shape memory wires. Arranged in a circle, these bundles are attached to one side of a thin metal disc that can pop up or down, going concave or convex. The disc, in turn, attaches to a circular rubber membrane on the other side, for forming a seal against flat surfaces.
When an electrical current is run through the nickel-titanium alloy wires, they warm up. This causes their inner lattice-like structure to change in such a way that they temporarily become shorter. When that current ceases, it instantly cools back down and returns to their previous longer form.
These artificial muscles act like muscle fibres that contract and relax, with the circle of wire bundles acting like one complete muscle. By switching on and off the electric current that flows to that muscle, it either contracts or relaxes. This causes the metal disc to either pop up or pops down, thus creating a vacuum within the rubber membrane, or releasing it.
The resulting prototype device is light, inexpensive to build, operates noiselessly, uses relatively little electricity, and can lift and hold objects weighing several kilograms – the technology is scalable, though, so heavier objects could be lifted by including more wires.
Additionally, by monitoring the electrical resistance of the wires and reducing the extent of their deformation from that, it's possible for a control unit to determine if a vacuum is being maintained, so it can issue warnings if it senses that an object isn't being held securely.
The university is currently looking for industrial partners to help develop the technology commercially.